
CountryData
Technologies for Data 
Exchange

SDMX Markup Language 

(SDMX-ML)



SDMX-ML

� Implementation of SDMX Information 
Model

� Uses eXtensible Markup Language 
(XML)

� Another implementation is based on 
GESMES/TS but SDMX-ML is far the most 
commonly used SDMX format



SDMX Versions

� SDMX-ML 2.1 is substantially different 
from SDMX-ML 2.0.

� This presentation focuses on SDMX 2.0, 
which at the moment is more widely 
used.
� Many available tools, especially Eurostat’s, 

only support SDMX 2.0.

� CountryData uses SDMX 2.0.



SDMX Messages

� Any SDMX-related data are exchanged 
in the form of documents called 
messages.

� There are several types of SDMX 
messages, each serving a particular 
purpose.



SDMX-ML Namespace Modules

� SDMX-ML defines several namespaces. Each 
namespace defines constructs for a certain 
area.

� E.g. there are namespaces for Structure, Generic, 
Query, and other message types.

� In some cases, user may define a namespace 
for their data, but it is still wrapped as a 
standard SDMX message.

� E.g. Compact data message.



Message Envelope

� A single type of “envelope” is used for 
all SDMX messages.

� Has its own namespace, commonly 
aliased as message or mes
http://www.SDMX.org/resources/SDMXML/schemas/v2_0/message

� Defines root element, which reflects 
message type (e.g. message:Structure, 
message:Query), a header, and some 
other elements.



Message Header

� Shared by all SDMX-ML message types

� Must be provided in every message

� Includes information on sender and 
receiver, and other relevant information



Namespaces in an SDMX 
Message

message

structure



Structure Message

� Defines the concepts, dimensions, 
codes, dataflows, and/or other 
structural information, but carries no 
data itself

� Similar in purpose to a database’s data 
dictionary

� Uses Structure namespace, commonly 
aliased as structure or str

http://www.SDMX.org/resources/SDMXML/schemas/v2_0/structure



Generic Data Message

� Conveys data in a form independent of a data 
structure definition

� Can be easily validated against the generic 
schema, but not against a specific DSD

� Can be used in situations where the recipient 
is not expected to know the details of 
underlying key family

� Namespace aliased as generic
http://www.SDMX.org/resources/SDMXML/schemas/v2_0/generic



Compact Data Message

� Designed to exchange large data sets in 
a DSD-specific form

� Can be validated against a DSD

� Less verbose than generic message; 
broader use of XML attributes

� Can be used for incremental updates



Compact Message 
Namespaces

� Compact message namespace defines 
elements of compact message.
� DataSet, Group, Series, Obs

� The actual namespace used on these 
elements is defined by the user.

<cd:DataSet
xmlns:cd="urn:sdmx:org.sdmx.infomodel.keyfamily.KeyFamily=UNSD:
CountryData:compact">

<cd:Series FREQ="A" SERIES="AG_LND_FRST" UNIT="PERCENT" 
LOCATION="T" AGE_GROUP="NA" SEX="NA" REF_AREA="GHA" 
SOURCE_TYPE="NA">



Cross-sectional Data Message

� Designed primarily to exchange many 
observations at a single point in time, in 
a DSD-specific form

� Can be validated against a DSD



Utility Message

� Special-purpose message, used mostly 
in schema-based validation functions

� DSD-specific format



Query Message

� Designed to query SDMX registries, web 
services, and other applications

� An SDMX-ML message is returned in 
response



Deriving SDMX-ML messages

� Because all types of SDMX-ML 
messages rely on the single underlying 
information model, many messages 
types can be derived from one another.
� Schemas for compact, cross-sectional, and 

utility messages can be derived from DSD.

� Generic, compact, cross-sectional, and 
utility messages based on the same DSD 
can be derived from one another.



Model-based equivalence of 
SDMX-ML messages

Key 
Family X

Key Family 
In Generic 
Structure XML

Compact Data
XML Schema 
For X

(d
er

ive
d)

(structures)
Compact Data 
XML Instance 
of X

Data in 
Generic
Data XML

Utility Data
XML Schema 
For X

(derived)
(structures)

Utility Data 
XML Instance 
of X

Cross-Sectional
Data XML 
Schema For X

(derived)
(structures)

Cross-Sectional
Data XML 
Instance of X

(equivalent)

(equivalent)

(equivalent)

Key 
Family X

Key Family 
In Generic 
Structure XML

Compact Data
XML Schema 
For X

(d
er

ive
d)

(structures)
Compact Data 
XML Instance 
of X

Data in 
Generic
Data XML

Utility Data
XML Schema 
For X

(derived)
(structures)

Utility Data 
XML Instance 
of X

Cross-Sectional
Data XML 
Schema For X

(derived)
(structures)

Cross-Sectional
Data XML 
Instance of X

(equivalent)

(equivalent)

(equivalent)

Source: SDMX User Guide, v. 1.3



Versioning of SDMX Artefacts

� Identification of an SDMX artefact can be 
thought to consist of 3 parts:

� Maintenance agency

� Id

� Version

� The isFinal attribute specifies whether the 
artefact has been finalized.

� When isFinal is set to True, no further updates are 
allowed without versioning



Agency (organisation)

� “A unique framework of authority within 
which a person or persons act, or are 
designated to act, towards some 
purpose”

� Agency has a very important role in 
SDMX.

� Maintenance Agency, Data Provider, Data 
Consumer all reference agency.



DSD and schemas

� A Structure Message in itself is not an 
XSD schema: it is an XML (SDMX-ML) 
document.

� XSD schemas can be derived from the 
DSD for Utility, Compact, and Cross-
Sectional messages.

� SDMX tools support automatic schema 
generation from DSD.



Names and Descriptions

� Many of SDMX constructs, especially in 
the Structure namespace, can (or must) 
be given a short human-readable Name 
and/or a longer Description.
� E.g. for every code there should be at least 

one Description.

� Names and Descriptions can be 
expressed in any language, as specified 
by the xml:lang attribute.



Annotations

� Annotations supply additional 
explanatory information and can be 
embedded in most SDMX constructs.

� Can be very useful for reporting simple 
metadata such as footnotes, or even 
mapping information.



Structure Namespace: 
ConceptScheme

� “Descriptive information for an arrangement 
or division of concepts into groups based on 
characteristics, which the objects have in 
common ”

� Optional in SDMX 1.0 and 2.0, mandatory in 
SDMX 2.1

� MDG data concepts are currently standalone. 
MDG metadata concepts are placed in a 
concept scheme.



Structure Namespace: 
Concept

� “A unit of knowledge created by a 
unique combination of characteristics”

� Concept is declared separately from 
dimensional structure.

� When a dimension, attribute, or 
measure is declared in a DSD, a 
reference to an existing concept is 
provided.



Structure Namespace: 
CodeList

� “A predefined list from which some 
statistical coded concepts take their 
values”

� Acts as a wrapper for codes to be used 
in a concept or concepts

� CodeLists are often the most 
changeable component in a DSD
� Must be versioned carefully



Structure Namespace: 
Code

� “A language-independent set of letters, 
numbers or symbols that represent a 
concept whose meaning is described in 
a natural language”

� Valid characters: A-Z, a-z, @, 0-9, _, -, 
$

� Names and Descriptions can be 
supplied in multiple languages.



Structure Namespace: 
KeyFamily (DSD)

� “Set of structural metadata associated 
to a data set, which includes 
information about how concepts are 
associated with the measures, 
dimensions, and attributes of a data 
cube, along with information about the 
representation of data and related 
descriptive metadata”



Structural Metadata: 
KeyFamily

� The element KeyFamily declares 
dimensional structure.

� References are made to concepts and 
codelists, declared outside the element.



Structure Namespace: 
MetadataStructureDefinition

� Defines “targets” against which 
reference metadata can be reported, 
and metadata attributes, i.e. the actual 
content

� Metadata can be reported against 
structural metadata such as Concept, 
and against keys or partial keys from a 
DSD.



Structure Namespace: 
MetadataStructureDefinition

� Footnotes are often reported as 
observation-level attributes, as in MDG 
DSD.

� Another way to report footnotes is use 
Annotations.

� In many cases preferable since it uses 
standard SDMX constructs and therefore 
supports multiple languages



Reference Metadata Support

� Few existing SDMX tools support SDMX 2.0 
reference metadata.

� Reflects insufficient attention given to SDMX 
metadata exchange until recently

� Documentation on MSD in SDMX 2.0 is often 
ambiguous

� Much stronger support in SDMX 2.1

� Many tools available

� Better documentation



Independence of SDMX 
Artefacts

� Many types of SDMX artefacts are 
maintained independently and used by 
reference.

� E.g. concepts from a concept scheme can 
be used in many DSDs.


